NET
Gotchas

Abstract

¢ So what does it take to be agile, on your
software projects, that is? Is it unit testing? Is it
having those stand-up meetings? What does
"we're on an agile project” really mean? In this
presentation, we will discuss agility and look
at some approaches and tools that can help us
get there.

¢ Along the way, we'll walk through 10 essential
steps to being agile.

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

What’s Agility?

What's Agility?
e It's being agile
OK, what's Agile?

e “marked by the ready ability to move with
quick easy grace”

o “having a quick resourceful and adaptive
character”

Why*

"Walking on water and developing software from a specification
are easy if both are frozen,"-Edward V. Berard.

o Software Development is
o risky
o change is the only constant
o we constantly have to fight entropy
o always in a state of flux

o Conventional approach has not solved our
problems

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

Software Development

o What's software development like?

o We often get compared to other human
endeavors

o Let’s study some of those
Bridge Construction
Medicine

Flying

Bridge Construction

R

o Safety Concerns

o Strong metrics and standards
Often construction and design are separated

Innovation and construction are separated

Medicine

o “Health was thought to be restored by
purging, starving, vomiting or bloodletting”

m Both surgeons and barbers were involved

o Rate of infection was high before Joseph Lister
introduced Germ theory

As human, we learn from our mistakes
We reject ideas

2 We take time

We learn eventually

o 400BC Chinese learned to fly a kite

o Lead to aspirations for human to fly

o Several inventions and innovations followed
for centuries

Flying is more than putting wings on a
machine

We can’t copy - we've to figure out what
works

Software Development

o Still a nascent field
o Too many variables
o Innovation is not separate from construction

o Separating design and coding phase is not
realistic

o Capers Jones studies large software projects
o Only 10% of projects were successful

o We can’t afford to continue at this rate

Engineering Rigor
In Engineering Construction is expensive, Design is
relatively Cheap

In Software Development Construction is Cheap (it’s
the conversion of code into executables)

Design (which involves modeling and coding) is
expensive

Can’t we quickly test our design (since construction
is cheap)?

Testing is the Engineering Rigor in Software
Development

SDC- 12

Software Development
- Methodologies and Practices

o We've tried several approaches

o Waterfall, Fountain, Spiral, Iterative and Incremental,
Agile, ...

SDC- 13

Waterfall Method

Waterfall-pros and cons

Simple (simplistic)

Easy to plan

Hard to deliver

e Assumes stages carried out to completion

Most practiced

High rate of failure

SDC- 15

SDC- 16

_Final
Actuals

M m 2 [m
17}
a5
T = {o10]
or 28 <
S o2 5
e
D i 7
=0
53 <
] i3 L
,_,_ mm
\ EE
n f o R
dL
@ e w g
o = Vg
8E 7 A =
< > >
2w e 0o,
4+ 23 S
Lo 55 e
- O
©
— E3 30O
7 %5 g
ya
b mm 1w..C
Eao =
a X o Awmo
o= ,, > e
1 iy
E5ug 3
O SLAk -
BeiEEr Eoliwl @ 5
38 i > S

Change in Requirements

-
30
25
20

15+

Requirements change

10

5 4

0

10 100 1000
Project Size in Function Points

10000

From Agile and Iterative Development: A Managers

Guide by Craig Larman

SDC- 17

O Requirementsss

How the customer expiained it | [How the Project Leader How the Analyst designed it How the Programmer wrote it How: the Business Gonsultant
understood it described it

How the project was
documented

What operations installed

How the customer was billed How it was supported What the customer really
neede

Understanding Domain is Essential =~ sourceorpicure unknown 1

Relevance

always, 7%

often, 13%

never, 45% 3
sometimes,

16%

rarely, 19%

Actual Use of Requested Features
From Agile and Iterative Development: A Managers
Guide by Craig Larman

SDC- 19

Impact

4
Requirements 5 Integrate &
Analysis Dasi g /ememISystem Testj
Potential k
impact of In a waterfall lifecycle,
risks being high-risk issues such as
integration and load test
tackled
are tackled late.
>
Time

From Agile and Iterative Development: A Managers
Guide by Craig Larman

SDC- 20

Factors

Success Factor Weight of Influence
User involvement 20
Executive support 15
Clear business objectives 15
Experienced project manager 15
Small milestones 10

From Agile and Iterative Development: A Managers
Guide by Craig Larman

SDE-24

Duration

Project Success. 23,000 projects

60%

50% — S
40% \ .
30% 2

20% -

10%

0% T T T T T)
6 9 12 18 24 36

Duration (months)

From Agile and Iterative Development: A Managers
Guide by Craig Larman

SDC- 22

What’s SW Dev Like?

— e ————— - e = 74"

How’s that?

o What makes surfing so challenging?

~~ Dynamic ever changing environment

~~ Sea is unpredictable, risky, sharks in water,

~ BEvery wave is different.

~ Waves take unique shape and behavior based on locale
o What makes software development so challenging

~~ Requirements and challenges are your waves

~ Never ceasing and ever-changing.

~~ Like waves, projects take different shapes and pose different
challenges

~~ And sharks come in many different guises

V\Hlatma,kes good surfer?

E=0" Agooé surfer understands the risks -~ -~ - =

o Never goes out further than could e comforteﬂSI’y sw1m-back‘;

o A wise surfer never surfs alone

S————A surfer has to dec1de whether to hold-or to get r1d of the
surfboard

o Finally, a successful surfer practices regularly

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

Agility in Development

o

There are some rigorous development practices

o Then there are approaches that have worked

(0]

Some of us have tried those secretively

o A few have realized that there are better,
lightweight, more pragmatic way

o

A few of them gathered in Snowbird, Utah in 2001

Agile Manifesto

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
T]:u'oughl this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
‘Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

© 2001, the above authors
this declaration may be freely copied in any form,
but only in its entirety through this notice.

Agenda

What's Agility and Why?

State of development

Agile Movement

Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

Meeting Requirements

gszt:sr @Actual position
g /@'
guess Short interval
7S / between
[R4 R /adjustments
" / |
\
\ |
\ -
, \ -
Long interval———p * ~ J - -
between S~a
adjustments

Project & Schedule

Start Realization Deadline Delivery

Quality

Planning

http://pag.csail.mit.edu/~adonovan/dilbert/show.php day=16&month=11&year=2005

Adaptive Planning

o “No plan survives contact with the enemy” -
Helmuth von Moltke

o Itis more important to succeed than stick
with a predefined plan

o Allow your management to dictate only two
out of three - quality, time, scope

o What if they insist you give them all three?

They get failure instead

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

Agility and Architecture
o What’s Architecture?

o High level design of subsystem and connectivity

o You don’t want to get it wrong!

what you know
about the project

When you generally want
to create the architecture

High Risk

Time
. Allow Architecture to evolve...

Agile means...

o Agile means different things to different
people...

Agll == No Documentatie

o Agile does not mean no documentation
o Keep documentation minimal
o Unit tests serve as documentation

Fit Tests serve as executable documentation

o

(0]

Keep your architecture document short

(0]

Find ways to create maintainable documentation

"I've never met a human being who would
want to read 17,000 pages of documentation,
and if there was, I'd kill him to get him
out of the gene pool," Joseph Costello,
former President and COO of SDA Systems
and CEO of Cadence Design Systems

Agile == No Design‘

o Agile Development does not discourage design
o It discourages all up-front design
o It encourages evolutionary design
o Design is critical
o Without it, you're seeking fragility and not agility
o You constantly evaluate and evolve design

o Following good design principles and refactoring

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

How to be agile?

Agility is all about action

How can you be evolutionary?

You need to build what'’s relevant
You need to make change affordable

How can you do that?

Feedback and
Communication

o Actively listen and seek feedback
o Feedback comes in two forms

o Is your code meeting and continuing to
meet your (programmers’) expectations?

o Unit and integration tests

o Is it relevant and solving customers’
problems?

o Frequent Demo and Exercise

Ask what’s Right?

EApply good principles, review constantly, test rigorously

o Are you building the software right?

o Are you building the right software?

Actlvely seek feedback, ask your application to be exercised,
integrate continuously, take smaller bites

Continuous, not Episodic

Increment

1-6 Months

Iteration
1-4 Weeks

Demo &
Exercise

Local | Check-in
Build

Multiple
times
per day

Release

Care About Code

Broken Window Theory

o Do not let anyone trash your application
o Make sure application is always releasable
o Get continuous feedback

o If something falls apart, know and act
on it right away

o Automate the discovery

Make Change Part of Your
Culture

o That’s the way we do things here... does not help

o Critically evaluate what you do and be open
for change

o Angry Gorillas research study...

Tools to help us

Xunit (JUnit, CPPUnit, NUnit, ...) o Fit/FitNess
Mock Objects o Selenium
(EasyMock, JMock,...) o Continous

integration tools

Code coverage tools (Cobertura...) (Cruise Control,
Bamboo, Team

Test quality tools (Jester...) City i)

Code quality tools (JDepend, Simian, o Planning

MDD, .. (XPlanner,
Mingle, ...)

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

Agile Team

Essence of Agility

Agile Team

Attitude makes a big difference
Smaller teams better than larger teams
Where possible, face to face conversation

Passionate developers with great attitude miles
apart is better than neighbors who hate each
other

Team owns the code - collective ownership
Self directed, highly competent teams

Respect and Responsibility

Agenda

What's Agility and Why?

State of development

Agile Movement

o Adaptive Planning

Architecture, Design, and Evolution
Coping with change

» Agile Team

Essence of Agility

Essence of Agility

1. Build Relevant Working Software

&. Seek continuous feedback from customers

3. Keep application healthy and releasable at all times

4. Be continuous, not episodic (take smaller steps)

5. Evolve your architecture

6. Make evolution affordable

7. Do not design in isolation

8. Practice Collective Ownership

9. Ensure that Customers Exercise your application regularly

10.Check your Ego at the door - work to solve problems

Thank You!

http: / / www.agiledeveloper.com /download.aspx

