
Refactoring your code - 1

Refactoring Your Code –
A Key Step to Agility

Venkat Subramaniam

spkr.name = 'Dr. Venkat Subramaniam'
spkr.founder = 'Agile Developer, Inc.'
spkr.affiliated = 'University of Houston'
spkr.associated = 'Rice Univ. Continuing Studies'

spkr.cred = %w{Programmer Speaker Trainer Author}

spkr.nfjs = 'NFJS Speaker since 2002'

spkr.website = 'http://www.agiledeveloper.com'
spkr.email = 'venkats@agiledeveloper.com'

Refactoring your code - 2

Abstract
Refactoring is one of the core practices in Agile

Software Development. Refactoring is based on
some core principles that apply to more than
writing good code. But, what's refactoring?
Why should you do it? How do you go about
doing that? What tools are available to
successfully refactor your App?

In this presentation we will address each of these
questions. We will take an examples based
approach to look at code that can benefit from
refactoring. We will discuss how to identify a
case for refactoring. Then we will use tools to
help us refactor.

Refactoring your code - 3

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 4

Good design vs. Over design
• Here’s something from production code (changed to

protect privacy!)

Refactoring your code - 5

Do you see the smell in that code?
• Not quite obvious at first sight
• May make sense if extensibility is needed
• But, there were exactly one

implementation of each interface (one
factory, one data source, etc).

• How about the following:

Refactoring your code - 6

My Code that Smells
• Let’s start with an example

• Here is code that works

• What do you think about it?

Refactoring your code - 7

From Writing to Coding…
• William Zinsser Wrote “On Writing Well”

25 years ago!
• He gives good principles for writing well
• These principles apply to programming as

much as writing non-fiction

–Simplicity
–Clarity
–Brevity
–Humanity

Refactoring your code - 8

Perfection

Refactoring your code - 9

Code Quality

Refactoring your code - 10

Why?
• “Design, rather than occurring all

up-front, occurs continuously during
development.”

• If the code is hard to understand, it is
hard to
–Maintain
– improve
–Work with for evolutionary design

Refactoring your code - 11

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 12

What’s Refactoring?
• “Art of improving the design of existing

code”

• “A process of changing a software system
in such a way that it does not alter the
external behavior of the code yet
improves its internal structure”

Refactoring your code - 13

But, again…?
• Why fix what’s not broken?

–A software module
• Should function its expected functionality

– It exists for this

• It must be affordable to change
– It will have to change over time, so it better be cost

effective

• Must be easier to understand
– Developers unfamiliar with it must be able to read and

understand it

Refactoring your code - 14

You're not Refactoring if…
• You are adding new functionality

• Fixing bugs

• Making new design enhancements

• Throwing away the ?#$*! code and
rewriting

• Making too many changes all at once

Refactoring your code - 15

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 16

What’s needed before refactoring?
• Anytime we touch code, we may break things

(inadvertently)
– You don’t want one step forward and ten steps

backward

• Before you refactor, make sure you have solid
automated self-checking unit tests for your
code

• Approach refactoring in small steps so it is easy
to find bugs or mistakes you introduce

Refactoring your code - 17

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 18

Points to Ponder
• Cohesion

• Encapsulation

• Don’t Repeat Yourself (DRY)

• Tell Don’t Ask (TDA)

Refactoring your code - 19

A word of Caution
• Some of the techniques, you will find, are

quite opposing to other techniques

• Sometimes the wisdom tells you to go
right, sometimes it tells you to go left

• You need to decide which is the right
approach when

Refactoring your code - 20

Smells to take note of
• "Smell check" your code!

–Duplication
–Unnecessary complexity
–Useless or misleading comments
– Long classes
–Long methods
–Poor names for variables, methods, classes
–Code that’s not used
– Improper use of inheritance
–…

Refactoring your code - 21

Exercise on Refactor
• Let’s deodorize my code!

Refactoring your code - 22

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 23

Overview: Refactoring Techniques
• Several refactoring techniques exist

• You modify the code any time you think it
will lead to
–Clarity
–Simplicity
–Better understanding

Refactoring your code - 24

Composing Methods
• Long methods are problem

– Lack cohesion
– Too complex

• Refactoring techniques
– Extract Method
– Inline Method
– Replace Temp with a Query
– Introduce Explaining Variable
– Replace Method with Method object
– Substitute Algorithm

Refactoring your code - 25

Move Features Between Objects
• Where does this method go?

– Often it is the (victim) class that's visible in the IDE?
– Hard to get it right the first time

• Refactoring techniques
– Move Method
– Move Field
– Extract Class
– Inline Class
– Hide Delegate
– Remove Middle Man
– Introduce Foreign Method
– Introduce Local Extension

Refactoring your code - 26

Many more…
• Many more refactoring techniques than

we can cover here

• Refer to Martin Fowler’s celebrated book
in references

Refactoring your code - 27

To refactor or not to refactor?
• To

– Anytime you can cleanup the code
– To make it readable, understandable, simpler
– You are convinced about the change
– Before adding a feature or fixing a bug
– After adding a feature or fixing a bug

• Not to
– Not for the sake of refactoring
– When the change will affect too many things
– When change may render application unusable
– In the middle of adding a feature or fixing a bug
– When you don’t have unit tests to support your

change

Refactoring your code - 28

Quiz Time

Refactoring your code - 29

Refactoring Your Code
• Why Refactor?
• What’s Refactoring
• Before Refactoring
• Let’s Refactor
• Refactoring Techniques
• Conclusion

Refactoring your code - 30

Conclusion
• Refactoring is a way of designing your

system
• Eliminates the need for rigorous (often

error prone) up-front design
• You can write some simple code and

refactor
• Red-Green-Refactor is the mantra of TDD
• Leads to more pragmatic design

• Learn when to refactor and when not to

Refactoring your code - 31

References…

Please fill out your evaluations!

1. William Zinsser, “On Writing Well,” Collins.
2. Martin Fowler, “Refactoring: Improving the

design of existing code,” Addison-Wesley.
3. Joshua Kerievsky, Refactoring To Patterns,”

Addison-Wesley.
4. William C. Wake, “Refactoring Workbook,”

Addison-Wesley.
5. Andrew Hunt and David Thomas, “Pragmatic

Programmer,” Addison-Wesley.
6. Venkat Subramaniam and Andy Hunt,

“Practices of an Agile Developer,” Pragmatic
Bookshelf.

Download examples/slides from
http://www.agiledeveloper.com/download.aspx

