
Testing with easyb

Venkat Subramaniam
venkats@agiledeveloper.com @venkat_s

Testing with easyb
Agile Development

Sustainability

Circle of Expectations and Circle of Relevance

Types of Tests

Behavior Driven Development

Functional Testing

Where does it fit in?

what’s easyb?

Stories vs. specifications

Stories

Writing stories as executable documentation
2

What’s Agile Development?

The essence of Agile Development...

3

What’s Agile Development?

Feedback Driven Development

4

Sustainability

Rapid feedback is good, but the pace has to be
sustainable

No point running fast in the wrong direction

5

Circles of Feedback

6

Customer
Expectations/
Relevance

Programmer
Expectations

Team

7

Traditional

Programmers
Customers/

Domain
Experts

Testers

Agile

Programmers
Customers/

Domain
Experts

Testers

Traditional Testing

8

Requirements Analysis Design Coding Integration

Testing & Bug Fixing

Too late in the game

Often pressure to release

QA become defenders

Often looked at as adversaries

Agile Development

9

Testing starts early & is Continuous

Don’t wait until end of iteration to test–test frequently and regularly

Application is exercised constantly, no surprises later

QA become support

Not adversaries, become part of the team

Work with customer and programmers—co-located with them

Testing & Code Fix

Analysis/Design & Coding

Delta of Requirements

Tenet Of Testing

As a tester, your responsibility is to author tests, not to run them!

10

Why Automate Tests?

“Error rate in manual testing is comparable to the bug rate in
the code being tested.”—Boriz Beizer.

11

Types of Tests

White-box testing

Black-box testing

Unit testing

Functional testing

12

Behavior Driven Design
It is a TDD approach

It is a ubiquitous language

It is an executable documentation

It promotes communication

Helps develop common vocabulary and metaphor

Help you to get the "words" right

Can be used by programmers, testers, business
analysts, domain experts, and customers.

13

Behavior and Story
You can use BDD to express Stories and Behaviors

Story Framework and Spec Framework

Stories correspond to User Stories—to express
behavior at application level

Spec or Behavior correspond to expectations at class
level—to express behavior at service/component level

These can help express requirements that can be
specified, understood, and negotiated by developers,
testers, business analysts, and business customers.

14

Behavior

Each behavior is expressed as a test/exercise
method

It tells what the object should do

Notice the keyword "should"—that's a main
focus in BDD—the shoulds and the shouldn’ts

15

Building Stories

You may define user stories as a series of
acceptance criteria as scenarios

It has the givens, events, and outcomes

That is

Given some initial condition(s),

When event(s) occurs,

Then ensure some outcome(s)

16

Functional Testing

Focused on what the application should do for the user

Features oriented

Often lead by customers and testers

Coarse grain

User stories can be expressed as executable
documentation

17

Types of Tests and Levels

Code
Meets

Customer’s
Expectations

Code
Meets
Your

Expectations
Classes/Models/...

Controls/Services/...

UI/Presentation/...

Unit
Testing

FIT

easyb

SeleniumWatir

easyb

It is a Behavior-Driven Design Tool

Started by Andy Glover

Express Story and Spec using Groovy Based
Domain Specific Language (DSL)

Highly expressive

Can be used for Java and Groovy applications

Story Framework and Spec Framework

19

Story Example

20

file:money.story

Unintegrated or Pending Story

Specifications

21

file: purchaseSoda.specification

Running easyb

22

You can now simply run easyb storyfile.story

Personas

Personas help us communicate and relate to specific
type of users and situations

For example, Jane may be rich customer, Bob may be
saving hard so he can buy a new car

23

Creating Stories as Tests

24

Creating Scenarios

25

Detailing Story

26

Integrating the Test

27

Integrating the Test

28

Integrating the Test

29

After Implementing AccountService

The and clause

30

Verifying

shouldBe, shouldntBe, equalTo, ...

ensure(expression1) { expression2 }

ensure(currentBalance) { oldBalance + 50 }

31

Grouping Methods

before and after

before_each and after_each

shared_behavior and it_behaves_as

32

Narrative

description “...”

narrative ‘customer deposits money’, {

 as_a ‘checking account customer’

 i_want ‘to deposit money’

 so_that ‘I can save money for a new car’

}

33

Using -txtstory option

34

Using -html option

35

-prettyprint option

36

Venkat Subramaniam
venkats@agiledeveloper.com

twitter: venkat_s

http://www.agiledeveloper.com

Thank you!

